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1. INTRODUCTION

1.1. Overview of Approaches to Solar Cycle Prediction

The prediction of solar activity over the next few
years and a forecast of the characteristics of the next
cycle are among the oldest problems in solar physics.
However, we cannot say that in recent years they have
been successfully resolved.

In general, methods for predicting solar cycles can
be conditionally divided into two types. The first type
includes methods of statistical extrapolation (or
autoregressive methods), when the analysis involves a
single time series to be properly predicted. The hori�
zon of prediction of the Rz�index by autoregressive
methods is normally several months or years.

Most researchers involved in the forecast of solar
activity have used these methods. This type of study
refers to a significant portion of existing predictions
ranging from classical works [McNish and Lincoln,
1949; Obridko, 1996] to the present time [Cane, 2001,
2002; Loskutov et al., 2001], including studies that are

based on neural networks as well [McPherson et al.,
1995; Fessant and Lantos, 1996].

The second type of predictions, which is called the
precursor method, uses additionally one or more time
series, such as third�party helio�geophysical data
[A.I. Ohl and G.I. Ohl, 1979; Feynman, 1982; Thomp�
son, 1993; Hathaway et al., 1999 ; Lantos and Richard,
1998]. In some cases, the precursor methods improve
the prediction because they are based on some kind of
physical model.

1.2. The State of the Problem of Predicting Cycle 24 

Solar cycle 24 is characterized by considerable
scatter in the predicted values of the maximum.
According to the statement of the Third Official Solar
Cycle 24 Prediction Panel created by the National
Aeronautics and Space Administration (NASA), the
National Oceanic and Atmospheric Administration
(NOAA), and the International Space Environment
Service (ISES), which is based on the results of an
analysis of many solar cycle 24 predictions by different
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methods, there are two possible scenarios for the
amplitude and time of the maximum: 90 units and
August 2012 or 140 units and October 2011, respec�
tively [Makarov and Tlatov, 2000; Schatten, 2002,
2003; Wang et al., 2002; Duhau, 2003; Meyer, 2003; Sval�
gard et al., 2005; Douglas and Biesecker, 2008; etc.].

From these data, it is evident that the prediction of
solar cycle 24 is still relevant. Recently, a number stud�
ies have been published with an analysis and criticism
of the earlier used methods [Petrovay, 2010], as well as
a discussion of the situation in the interplanetary space
and the behavior of the near�Earth space characteris�
tics pointing to extremely low values of all parameters
on the descending branch of cycle 23 and implying a
scenario for solar activity in the next cycles resembling
the historical Dalton minimum [Russell et al., 2010].

This paper attempts to predict solar cycle 24 by dif�
ferent methods, which makes it possible to compare
their advantages and limitations and choose an opti�
mal prediction scenario.

2. DIFFERENT APPROACHES 
TO THE PREDICTION OF SOLAR CYCLE 24 

USED IN THIS STUDY

2.1. Linear and Singular Spectral Predictions

In this paper we used a series of daily data on vari�
ations of Rz in cycles 21, 22, and 23 of solar activity
(January 6, 1977 to November 30, 2010) taken from
the website www.noaa.gov. We used autoregressive
methods dealing with a single time series Rz and pre�
dicting its extension. To this end, the original time
series is divided into realizations (Fig. 1a) consisting of
predictors that form lags (i.e., those readings that
expectedly affect the subsequent readings of the series)
and adaptors (i.e., those subsequent readings that will
be predicted in the course of learning of the algo�
rithm). Then, the algorithm learns to predict these
existing adaptors, i.e., reveals the dependence of adap�
tors on predictors using some part of the series (a
learning sequence of readings). The algorithm identi�
fies the dependence between the values k of terminal
readings of realizations (Fig. 1a) and predictors on the
learning interval W (identifying these predictors and
adaptors) for the time series under investigation. The
dependence between each of the k terminal readings of
the implementation and the lag is assumed to be linear.
Geometrically, it is a Q�dimensional hyperplane.
Figures 1b–1d show a two�dimensional hyperplane as
an example. In the case of iterative prediction, we have
k = 1; i.e., the prediction covers a single reading of the
given series. In the case of noniterative prediction, we
have k > 1; i.e., the adaptor is represented here by a
vector and the prediction covers several readings for�
ward (Fig. 1a). The set of predictors that are followed
by the predicted readings is called forward lag. The

search for a hyperplane is carried out by singular spec�
tral analysis (SSA).

SSA makes it possible to predict the spectral com�
ponents of time series that are least exposed to the
influence of noise.

Unlike the autoregressive linear prediction, the
regular spectral prediction is characterized by the fact
that only individual spectral components of time series
are predicted. In this case, the spectral basis is usually
specified a priori (see, for example [McNish and Lin�
coln, 1949; Cane, 2001, 2002]). The singular spectral
prediction optimizes the basis to identify a subspace
that is least affected by noise. Each realization of the
time series is projected onto this special basis, in which
a subspace of directions with a minimum variance is
chosen. It is assumed that the noise variance is the
same for all directions, while the directions with a
maximum variance (i.e., part of the spectral compo�
nents of the series) will have a highest signal�to�noise
ratio [Pyt’ev, 1990; Ozheredov et al., 2009]. Normally,
this makes the prediction smooth, since there are no
unreliable variations.

Figure 2a (right) shows the dependence of the error
(see the scale) on the dimension of hyperplane Q and
the size W of the learning interval. The error is the sum
of squared differences of predicted and actual values of
the series and it reaches a minimum (deep blue color)
in the case of a successful prediction. As can be seen
from Fig. 2, there are several such areas. Due to this,
the seemingly successful predictions of individual
cycles of solar activity (Figs. 2a, 2b) would make it
possible in each case to pick up pairs of adequate val�
ues of Q and W. However, one does not manage to
make a prediction using the same values of these
parameters for the entire series of given cycles (Figs. 2, 3),
which means that there is no general regularity for the
formation of the entire series of cycles and the predic�
tion of solar cycle 24 by this method becomes uncer�
tain.

The iterative prediction (see Figs. 2, 3) has the spe�
cific feature of accumulating a significant amount of
errors as the horizon of forecast increases; this method
is mainly suitable for short�term forecasts (Fig. 3b).

The noniterative prediction allows for the predic�
tion of long�term variations of time series, for exam�
ple, two cycles (22 and 23), as is shown in Fig. 4a.
However, this prediction is insufficiently adaptive.
This leads to a mismatch between predicted and actual
variations in Wolf numbers Rz (see the rise in the pre�
dicted branch of Rz at the end of cycle 23 in Fig. 4a)
and a mismatch between cycles 23 and 24 in Fig. 4b for
the prediction of cycle 24 and part of cycle 25.
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2.2. Iterative Nonlinear Prediction of Cycle 24 
by the Neural�Based Approach

In the iterative prediction using the neural�based
approach (in a multidimensional space of lag vectors)
when the dependence of adaptors on predictors in
principle is nonlinear, one can assume that the depen�
dence is linear in some neighborhood of the forward

lag (see Fig. 1a). The main problem is the search for
this neighborhood or, essentially the same thing, pre�
cedents of it: the nearest neighbors to this forward lag.
The search for the nearest neighbors (in our case, in a
75�dimensional space of lag vectors) was conducted
using the Neurons with Adaptive Turn of Restricting
Ellipsoid (NATRE) special�purpose neural network,
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where the nearest neighbors are determined in confor�

mity with the Mahalanobis optimal distance1 [Mahal�
anobis, 1936].

As can be seen in Fig. 5a, this forecast, made for all
the initial cycles, including the cycle 22, gives a rather
satisfactory prediction of solar cycle 23 with a pro�
tracted descending branch. The good agreement
between the original and the prediction in cycle 23
allows us to hope that the forecast for cycle 24, made
likewise for the entire original series of cycles, includ�
ing cycle 23 (i.e., the entire time series of learning)

1 The Mahalanobis distance (introduced by the Indian statistician
P.C. Mahalanobis in 1936) is a measure of the distance between
vectors of random variables, generalizing the concept of Euclid�
ean distance. Using Mahalanobis distance, one can identify the
similarity between unknown and known samples. It differs from
Euclidean distance in that it takes into account the correlations
between variables and is scale�invariant.

with the same lag length (Fig. 5b), is reliable. It gives a
good agreement between predicted and actual values
of Wolf numbers Rz up to May 2011 and predicts a
maximum of 70 units for cycle 24 (Fig. 5b).

Like in previous studies carried out on the basis of
fundamentally different neural networks [McPherson
et al., 1995; Fessant and Lantos, 1996], the amplitude
of the maximum of solar cycle 24 turned out to be
around 145. The discrepancy with our result may be
due to the fact that the abovementioned studies could
not take into account cycle 23 and used data of a
period before the onset of cycle 23. In view of this, to
get a successful prediction of cycle 24, these studies
had to use a forecast horizon covering two cycles
(more than 20 years), which is a difficult task with the
iterative prediction (as was shown above).
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3. THE PRECURSOR METHOD

3.1. The Choice of Precursor

Next, we attempted to extend the horizon of the
forecast of Wolf numbers Rz by using the precursor
method, i.e., an independent time series with a leading
series that correlates with the original series.

The precursor for predicting cycle 24 relies on the
notion of dynamics of solar magnetic fields that gener�
ate sunspots, i.e., basis data to estimate the actual vari�
ations of Wolf numbers Rz.

At the first stage, according to the mechanism of
generation of solar magnetic fields proposed by Parker
(alpha–omega–dynamo), a poloidal magnetic field
turns into a toroidal field due to solar rotation (the so�
called omega effect). The index of the Sun’s toroidal
field is the equatorial magnetic field ef. The Rz�index
reflects the variations of this field. The index of the
poloidal field is the polar field pf. This process deter�

mines the generation of the solar cycle and character�
izes its ascending branch with a length of 4–5 years.

At the second stage, the poloidal field is restored
through the torsion and extension of the toroidal field
(alpha effect). This part of the field dynamics corre�
sponds to the descending part of the solar activity
cycle, remaining controversial.

In our case, the Rz�series is appended as a predictor
(in other words, independent variable) by the time
series of the quadratic function of approximation of Rz
modulo pf, i.e., q(|pf|), which correlates with the Rz�
series with a positive shift Δt. This series is represented
by the square transformed magnitude of the polar field
pf. If the horizon of the autoregressive prediction of Rz
is T, then, when the predictor q(|pf|) is strongly corre�
lated with Rz, the horizon of autoregressive prediction
of q(|pf|) is also equal to T and, taking into account the
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shift between the series, the effective horizon of the
prediction of Rz becomes equal to T + Δt.

The variations in the predictor pf in solar cycle 24
were predicted using singular spectral analysis.

Figure 6 shows a series of measurement data on the
polar field pf with a step of 10 days (see http://wso.
stanford.edu/gifs/Polar.gif).

To reveal the significant variations of Rz, we used
data on the equatorial field ef taken in the same inter�
val of measurements as the polar field pf given at the
same website.

3.2. Results of Analysis

To eliminate the noise in the Rz series, we per�
formed an averaging operation. The interval of averag�
ing was chosen on the basis of the coefficient of corre�
lation between the values of Rz and ef, since it was
assumed that the main large�scale variations of Rz
repeat the variations of ef. Figure 7 shows the depen�
dence of the correlation coefficient on the averaging
interval.

The optimal interval was chosen so as to maximize
the coefficient of correlation between the smoothed
series of Rz and ef, provided that the averaging interval
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does not exceed values comparable with the 11�year
cycle, i.e., when the 11�year periodicity may be lost. It
can be seen from Fig. 7 that the optimal averaging

period constitutes 160 10�day intervals (or  =

4.4 years.

Figure 8 shows the results of averaging of Rz, ef, and
the magnitude of the polar field pf.

Then, we search for the optimal precursor ef and
the magnitude of pf with a shift, which will be used to
predict the Rz�index. To do this, we analyzed the coef�
ficients of determination (K) of the dependence of Rz

10160
365

×

on the linear combination of q(|pf|) and ef for different
shifts of ef and the magnitude of pf. Figure 9 (left)
shows the results of this study.

Figure 9 (right) shows only those linear depen�
dences that have nonnegative coefficients at q(|pf|) and
ef (i.e., obtained without inversion, since we believe
that the presence of a negative coefficient at q(|pf|)
and/or ef is unphysical).

It can be seen from Figure 9 (right) for the version
without inversion that the maximum of the coefficient
K (equal to 0.96) is obtained for the displacement ef =
0 years and for the displacement pf = 5.53 years.

Thus, to extend the horizon of prediction of the Rz
index as a predictor, as follows from Fig. 9, one can use
the time series of the magnitude of pf with a positive

shift of Δt = 5.5 years. It is unreasonable to use the
time series of ef since it has no positive shift.

Figure 10 shows the results of the linear prediction
of variations in the polar field pf in the next cycle 24
(depicted as a magnitude). Now, to construct a predic�
tion of the Rz index by variations of pf, we used the
dependence of Rz(pf) on all available data and approx�
imate this dependence by a parabola (Fig. 11).

In accordance with Fig. 11, we can obtain an ana�
lytical expression for the dependence Rz(|pf|):

Rz = 0.0063 pf 2 + 0.1359 pf + 20.7236.

Figure 12 shows the variations in the Rz index in
cycle 24 predicted by the predicted variations of the
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magnitude of pf and the dependence between the mag�
nitude of pf and the Rz�index (shown in Fig. 11).

As can be seen from Fig. 12, the parabolic approx�
imation of the dependence of Rz(|pf|) satisfactorily
describes cycles 22 and 23. Within the framework of
this model, the expected value of the maximum of Rz
in cycle 24 was 50 and the time of the maximum was in
April 2012. However, given the fact that initially the
data was averaged over 4.4 years, the resulting maxi�
mum may be below the actual value. Therefore, one

should stipulate that our predicted value of 50 units
corresponds to average annual�mean smoothed values
of Rz, equal to 60–70. This is close to that obtained by
us in Section 2.2 (see Fig. 6) using a neural network
approach.

4. DISCUSSION AND CONCLUSIONS

The onset of the minimum of solar cycle 23 was
expected in 2006, but the decrease in solar activity
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lasted until early 2009. The protracted descending
branch of cycle 23, which led to the fact that the cycle
minimum was unusually prolonged, has long caused
serious discussions in publications devoted to a com�
parative analysis of known historical cycles of solar
activity as well as the current state of the characteris�
tics of the interplanetary space (solar wind and the
interplanetary magnetic field (IMF)) and the near�
Earth space. In [Russell et al., 2010] it was shown that
in late 2008 the periodic oscillations in the solar wind
velocity observed earlier disappeared and the very
magnitude of the velocity in late 2008 and 2009–2010
was no more than 300–350 km/s. Concurrently, a sig�
nificant decrease in the intensity of energetic electrons
in radiation belts was observed. The descending
branch of cycle 23 involves a deep minimum of the
IMF and the concentration of solar�wind protons with
a continuing downward trend, which has never been
previously observed from the very beginning of mea�
surements of these parameters by space probes. A sim�
ilar trend was also observed at high heliogeographic
latitudes by the Ulyssis space probe [Smith and
Balogh, 2008].

The protracted minimum of cycle 23, the situation
in the near�Earth space corresponding to this cycle,
and the anomalously low values of Rz at the maximum
of cycle 24, as was predicted by us, are similar to the
scenario of solar activity transition to the historical
Dalton minimum in cycles 3–6 (Fig. 13). The
extremely low solar activity in the Dalton minimum
led to some cooling of the climate (for example, the

River Thames froze and its ice cover was used for the
1814 London Fair).

In conclusion, our analysis of variations in the Wolf
numbers Rz and attempts to predict solar cycle 24 by
different methods in this paper showed the following:

(1) the proposed linear autoregressive (noniterative
and iterative) methods yield large values of Rz (the
amplitude of the maximum of cycle 24): 107 and 128,
respectively. The resulting values are within the range
predicted by the Third Official Solar Cycle Prediction
Panel created by NASA, NOAA, and ISES for some
approaches and models (120–160);
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(2) in contrast to other approaches, the nonlinear
iterative method with a neural network allowed us to
provide the best consistency between the predicted
and actual values of Rz for both the unusually pro�
tracted cycle 23 and the initial phase of cycle 24. For
the maximum amplitude of cycle 24, the predicted
value is 70;

(3) the proposed precursor method allowed us to
extend the horizon of the prediction of Rz by one cycle
based on the dynamics of the solar polar magnetic
field. This method suggests that the maximum of solar
cycle 24 is expected to occur in April 2012 and its
amplitude should be around 60–70. This is close to
the value predicted by the neural network method.
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